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Abstract: 

This Tech Brief discusses the use of Response 
Surface Methodologies (RSM) in the process of 
optimizing design performance.  Identifying design 
points where performance is maximized and 
variation in system response minimized is central to 
implementing successful designs.  This paper 
discusses a method for evaluating the significance of 
parameter estimations in generating response 
surface models and how to use them in the decision 
making process.   
 
Background: 
 
Typically, Response Surface Methodologies (RSM) 
are used in building models from empirical data.  
The power of simulation, however, is in the ability to 
create virtual prototypes of systems and evaluate 
their performance.  This provides another source for 
RSM other than empirical data.  The simulations are 
typically executed at much lower costs and in less 
time than actual prototypes.  Additionally, the 
evaluations can be done at the beginning of a design 
process where decisions will have the largest impact 
on project, design and production costs.  
 
Finite element models are often used to analytically 
simulate the performance of options in the design 
space. The response surfaces generated from the 
simulations can provide vital information in 
developing paths that will minimize costs and 
maximize performance.  The limitations, however, of 
response surface models need to be appreciated in 
order to properly use them in the decision making 
process.  
 
Estimating the goodness associated with the 
parameters defining the response surface is 
important in understanding the value of a model.   
Generating the surface or hyper surface from 
response data is referred to as a regression analysis.  
In the case of using results from deterministic 
models, the variability associated with the regression 
is due to the ability of the imposed model to explain 
the results not due to random variation within the 
data.   

 
When reducing empirical data, the variation seen in 
the reduction is due to limitations inherent in both 
the imposed regression model and measurements 
associated with the data.  With data obtained from 
analytical models the variation is associated only 
with the chosen regression model.  
 

Using Response Surface Methodologies: 
 
The approach typically taken with the Response 
Surface Methodology (RSM) is to first determine 
through a screening process the independent 
variables which have the greatest influence on the 
system’s response.  This allows the engineer to 
either develop the most efficient full or partial 
factorial design which will capture the main and the 
cross coupling effects of the variables that drive 
performance.  Typically, if a variable doesn’t have a 
large main effect it seldom has a significant cross 
coupling with another variable and hence is not 
included in the design space under evaluation. 
Depending on the specific partial factorial design 
some of the cross coupling effects will be aliased but 
not necessarily all of them.   
 
The second step is to determine the extent of the 
design space where a 2

nd
 order polynomial will 

provide a good representation of the system’s 
response.  The idea behind this approach is that 
virtually any system response can be well 
characterized by a second order function as long as 
the domain of the analysis is sufficiently small.   The 
typical method for determining the goodness of the 
fit is to use the regression coefficient as the primary 
metric.  Using this metric alone, however, can lead 
to an incorrect conclusion regarding the utility of the 
characterization in evaluating robustness of a design 
to system variation. This topic is taken up in the 
section entitled Checking Model Adequacy. 
 
An important feature to remember is that even 
when an adequate 2

nd
 order polynomial has been 

identified it does not mean that extrapolation can be 
employed with any confidence.  The primary reason 
for this is that the polynomial is very likely not the 
model that best corresponds to the actual physical 
phenomenon. Even though the polynomial can 
provide an excellent explanation of the variation 
seen in the design space it does not necessarily 
capture the causality associated with it. Correlation 
is necessary but is not sufficient for causality.  The 

Employing Response Surface Methodologies for Design Optimization   
 

Tech Brief 150901 DE 

Integrated Systems Research, Inc. 

September, 2015 

steve.carmichael@isrtechnical.com 

mailto:steve.carmichael@isrtechnical.com


 
 

2 
 

regression can simply provide a good fit within the 
chosen design space without providing the best 
relational model for the data.   
 
Once an adequate model has been created, the 
response surface can be used as a means of 
identifying local maxima or minima at which to 
operate.  Taking partial derivatives around the 
operating point enables the engineer to assess the 
tolerance of the design to variation in operating 
conditions.  Additionally, if the surface is a ridge the 
engineer can also identify the direction to take the 
design space to further optimize desired system 
characteristics.  
 
This brief provides a couple of simple examples to 
illustrate these RSM concepts and techniques. 
 

Checking Model Adequacy: 
 
Building numerical models involves fitting an 
equation to an overdetermined population of data. 
(e.g., more degrees of freedom in the data than are 
in the model).  The technique employed in fitting an 
overdetermined data set is typically some variation 
of a least squares approach.  For a given model, the 
least squares approach provides a result that 
minimizes the error between the fit and the actual 
data points. It’s a minimization method that mimics 
what is observed in physical systems.  
 
The difference between the model and actual data 
points (e.g., residuals) will sum to zero.  The variance 
between the data and model is captured by looking 
at the sum of the square of the difference.   In 
general, the smaller the variance the greater 
explanatory power of the model.  The explanatory 
value is accounting for variation between the model 
and the data not causal relationships between the 
variables.  The regression coefficient is typically the 
parameter used to evaluate goodness of fit.    
 
As degrees of freedom are added to the model, the 
tendency is for the regression coefficient to 
approach unity (e.g., maximum explanatory power).  
The variance, however, can actually increase with 
additional terms and is masked by an increase in the 
regression coefficient.  An adjustment to the 
regression coefficient is often employed to 
determine whether or not the additional terms add 
value to the model. 
 

Figure 1 provides a simple example of this process. 
 

 
 

Figure 1 
   
The least squares process creates a square matrix 
from the overdetermined independent variable 
matrix [X], by pre-multiplying each side of the 
equation by the transpose of that matrix [X]

T
. 

 
 

 
Equation 1.0 

 
The system is over determined (e.g., n > m).  The 
resulting independent variable square matrix is 
inverted and both sides of the equation are 

multiplied by it to obtain the coefficient vector  for 
the regression model.  
 
The regression coefficient is obtained from the ratio 
of the regression sum of the squares and the total 
sum of squares. 
 
The regression sum of squares is 
 
 
 
 

Equation 2.0 
 

The total sum of the squares is  
 
 
 
 

 
Equation 3.0 
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The regression coefficient is 
 
 
 
 

Equation 4.0 
 

As stated before, the regression coefficient will trend 
towards unity as the number of terms in the 
independent variable matrix increases.  The actual 
benefit, however, provided by additional terms can 
be non-significant and potentially create noise when 
evaluating the sensitivity of the system to input 
variations at a given operating point.  Applying 
Occam’s razor

1
 is recommended when determining 

the best model to use in evaluating a system.   
 
The adjusted regression coefficient is a means of 
determining whether or not additional terms are 
being added beyond what is necessary.   The ratio of 
the number of degrees of freedom in the data to the 
remainder left from the model is used to scale the 
regression coefficient.  The adjusted regression 
coefficient will decrease when additional terms in 
the model are unnecessary. 
 
 
 
 

 
Equation 5.0 

 
In Figure 1, the R

2
 for a second degree polynomial is 

0.9899 while for a fourth degree fit it is 0.9907.  At 
first blush it appears that adding the additional 
terms associated with the fourth degree polynomial 
improves the model.  If the adjusted regression 
coefficient is used, however, the coefficient becomes 
lower with the added terms (0.985 compared to 
0.972) indicating they are unnecessary.    
 
The adjusted regression coefficient for the fifth 
degree polynomial does increase, but it only leaves a 
single unconstrained degree of freedom (n-p).   Since 
the adjusted regression coefficient for the fourth 
degree polynomial is lower than the second, it would 
be advisable to either employ the second degree 
model for evaluating the data or obtain more data in 
the domain to verify whether or not the variation 

                                                           
1
 Entities must not be multiplied beyond necessity 

that appears to be explained by the higher order 
polynomial actually exists.  
 

Using RSM at Decision Points: 
 
Figure 2 provides a plot of a stepped bar used to 
evaluate the stress concentration at the shoulder of 
the step as a function of fillet radius and the step 
ratio.  The bar is loaded axially with a stress ratio R 
(not to be confused with the regression coefficient 
R

2
) of -1.  The nominal stress is 10 ksi.   

 
The stepped bar provides results that are intuitively 
obvious but illustrates the process of using a 
response surface to evaluate the performance and 
robustness of a component’s performance to design 
and/or manufacturing variations.    
 

 
 

Figure 2 
 
The stress concentration (Kt) response surface for 
the step bar is provided in Figure 3.  The surface is 
fitted with a 2

nd
 polynomial which includes the cross 

coupling term.  The adjusted R
2
 for the regression is 

0.9995. 
 
 

 
Equation 6.0 

 

1 is the fillet ratio (r/d) and 2 is the step ratio 
(D/d). 
 
The cross coupling term for the fillet and step ratios 
has significance in terms of goodness of fit.  When 
the cross coupling term is eliminated the adjusted 
R

2
=0.9966.  This is lower than the adjusted R

2 
for the 

polynomial that incorporates all the terms.  The 
cross coupling term, therefore, should be kept in the 
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response surface.  This term has a relatively large 
influence on the tolerance evaluation as a function 
of the step ratio. 
 
 

 
 

Figure 3 
 
The cost and geometry constraints could be overlaid 
or projected onto the surface to identify the viable 
commercial region that exists for the design.  Using 
partial derivatives of the numerical model, the 
robustness of the stepped bar in terms of fatigue life 
can be evaluated in that region. 
 
Since the fatigue life is a very strong power function 
it would be difficult to obtain a good curve fit over 
any sizable design space with a 2

nd
 order polynomial.  

Having this a priori knowledge enables the engineer 
to generate a response surface using another  
variable other than fatigue life (e.g., stress 
concentration) which can be curve fit relatively well 
with a polynomial. Then employing a secondary 
calculation (e.g., Basquin’s equation) applied to the 
concentrated stress, evaluation of the component’s 
robustness in terms of fatigue life can be evaluated 
at a given design point.  
 
In this example, absent cost and geometry 
constraints, the corner points of the response are 
where the local maxima and minima of the design 
space exist.   Employing the Basquin equation for the 
life evaluation, Tables 1 and 2 summarize the 
estimated percent change in fatigue life for a 
percent change in a given design variable.   
 
The percent change in life as a function of the two 
design variables, fillet radius and step ratio, were 
obtained by taking partial derivatives at the corners 

of the response surface.  The change in stress 
concentrations were then used to compute the 
change in life predictions.  
 

Table 1 
Percent Change in Life as Percent Change in (r/d) 

 

Corner Low High 

1 4% -3% 

2 2% -2% 

3 2% -1% 

4 4% -3% 

 
Table 2 

Percent Change in Life as Percent Change in (D/d) 
 

Corner Low High 

1 -2% 2% 

2 -1% 1% 

3 -1% 2% 

4 -2% 2% 

 

Table 3 provides the estimated -3 fatigue life 
predictions at the corner points. 
 

Table 3 
Fatigue Life Predictions 

 

Corner Cycles 

1 3.01E+05 

2 2.93E+06 

3 2.18E+06 

4 1.82E+05 

 
Three key performance characteristics are easily 
identified from these tables.   First, as expected, the 
maximum life in the design space occurs where the 
fillet radius is a maximum and the step ratio is a 
minimum.    
 
Secondly, the design has its greatest tolerance to 
manufacturing variations at the same design point as 
where the life is maximized.  Operationally this is an 
optimal point in the design from both a yield 
perspective as well as tolerance to manufacturing 
variations.  Thirdly, the tolerance evaluation 
indicates that the variation in the fillet radius is of 
greater significance than the step ratio. 

Corner 1 

Corner 2 

Corner 3 

Corner 4 
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Attempting to extrapolate outside the design space, 
results in significant error.  For example, when 
extrapolating with the response surface function, 
the Kt value is predicted to be 3.152 with a ratio (r/d) 
of 0.031 at a (D/d) of 1.75.  The actual value is 3.582.   
 
The extrapolated Kt value results in a life prediction 
that is 2.5 times greater than when the correct stress 
concentration value is used.   Although the 
polynomial provides an excellent fit of the design 
space, the ability to extrapolate with it does not 
exist. This is because the function that actually 
relates the stress concentration to the r/d ratio is a 
power relationship.  The 2

nd
 degree polynomial does 

not capture that relationship outside the design 
space.  
 

Summary: 
 
Response surfaces are useful tools at design decision 
points in that they enable the engineer to both 
evaluate the expected performance and the 
tolerance of the design to input and manufacturing 
variations.  
 
When costs and geometry/manufacturing 
constraints are mapped onto the surface the 
commercial design space is readily identified and can 
be evaluated.  This is extremely helpful in 
determining if the costs associated with relaxing 
given restraints are both functionally and 
commercially warranted.  
 
The adequacy of a model can be evaluated with the 
adjusted regression coefficient as a function of terms 
used in the polynomial.   Terms should only be used 
in the equation if they actually reduce the variance 
seen between the data and the imposed model.   
Employing insignificant terms in the response 
surface model not only creates more variance 
between the model and the data but introduces 
possible noise when  evaluating the robustness of 
the component or system. 
 
The particular yield or response of a system may not 
lend itself to a polynomial curve fit over a reasonable 
design space. When this is the case, it may be 
possible to identify a parameter that is closely linked 
to the desired response and use it in the response 
surface evaluation.  The response can then be used 
in subsequent calculations to obtain the desired 

performance information.  Such is often the case 
with fatigue life predictions.  
 
Extrapolation of response surfaces should not be 
used at decision points.  Extrapolations can be useful 
in guiding the direction for moving the design space, 
but decision points should only be made with 
evaluations within the domain of the design space.  
 
 
 
 
 
  

 


