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Abstract: 

This Tech Brief discusses potential pitfalls to be 
aware of when employing shake table data and the 
half power method in estimating the damping 
associated with structural modes.  Data provided to 
the engineer is oftentimes incomplete. Being 
cognizant of the limitations in the data, how to 
assess what has been provided, and extract damping 
values at resonances are topics covered in this 
paper.  
 
Background: 
 
Modal structural parameters (e.g., resonant 
frequencies, modal stiffness, mass and damping) are 
typically estimated with curve fitting programs using 
impact or shake table data.   More frequently, 
however, the design engineer is provided with data 
that has not been curve fit and damping is often a 
desired parameter to be obtained. Damping is the 
critical parameter at resonance, since it is the 
mechanism that controls the response of the 
structure as it freely exchanges its kinetic and 
potential energy at a natural frequency.  Endurance 
tests are usually run at the fundamental natural 
frequency of the component. Knowing the amount 
of damping in the component is critical to evaluating 
the alternating stresses during test and assessing the 
components’ margin against fatigue failure.  
 

Techniques for Estimating Damping: 
 
There are three common means of estimating 
damping: 
 
The first is a time domain approach and is used to 
estimate the damping associated with the 
components’ fundamental frequency.  This is often 
referred to as the log decrement approach.  The rate 
of decay of an impulse response is the basis for the 
estimation.  The approach is straight forward to use 
as long as higher modes are not modulated with the 
fundamental response.  
 
A second approach is to extract damping values 
based on phase angle response around the 

resonance.  This is a frequency domain approach. 
Without damping, the response of a structure is 
either in or out of phase with the source of 
excitation.  At resonance, however, such a structure 
would have an unbounded response.  Since all actual 
systems have some internal damping, there exists a 
phase relationship between the structure and the 
excitation source.  The response of the component 
90 degrees to the input is referred to as the 
imaginary response.  The real response away from a 
resonance is either in or out of phase with the 
excitation. The slope of the phase angle response at 
resonance is controlled by the damping in the 
system.  This phase angle data can also be used to 
estimate damping values. 
 
The third means of estimating damping is referred to 
as the half power approach. The method uses the 
bandwidth at resonance, obtained from the 
response modulus, to estimate damping.  The same 
data (bandwidth) can be obtained from phase angle 
information employing a modal circle.
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  This paper, 

however, reviews only the half power approach 
using the response modulus and how it relates to 
the structural response of a mechanical component. 
 

Dynamic Behavior of a Structural Component: 
 
The three (3) degree of freedom (DOF) system, 
shown in Figure 1, illustrates the general behavior of 
a mechanical system under dynamic loading and the 
potential pitfalls in using the half power approach in 
estimating damping.  
 

 
 

Figure 1 – 3 DOF System 
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Figures 2 and 3 provides the total real and imaginary 
responses of the 3 DOF system for a unit excitation 

input at DOF X3 and response at DOF X1 (e.g., H()31). 
 

 
 

Figure 2 – Real Response H()31 

 

 
 

Figure 3 – Imaginary Response H()31 

 
Typically, shake table data will be provided as 
magnitude and phase.  The resonant frequencies are 
normally identified by observing where the phase 
angle response passes through 90 degrees.  The 
relationship between the phase angle and the 

damping factor  is provided in equation 1.0.   
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Equation 1.0 

 
 

Figure 4 provides the phase plots for two levels of 
damping.   
 

 
 

Figure 4 – Phase Response H()31 

 
The magnitude of the response for a damping factor 

 = 0.01 is shown in Figure 5. 
 
 

 
  

Figure 5 –Modulus Response of H()31 
  
The system response is the combination of 3 modes 
which are superimposed to obtain the total 
response.  Figure 6 provides a plot of the real 
contribution of the three modes and Figure 7 the 
imaginary responses.   
 
When using the half power approach with modulus 
plots, the engineer needs to be aware that the 
resonant response at a particular mode is influenced 
by the mass lines of lower modes and the stiffness 
lines of higher modes.  Due to this influence the 
bandwidth estimated by this approach can have 
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significant error and care needs to be taken to 
identify when this situation may arise. 
 

 
 

Figure 6 – Real Response of Individual Modes 
 

 
 

Figure 7 – Imaginary Response of Individual Modes 
 

Half Power Damping Estimations: 
 
The magnitude or modulus of the response is the 
root sum squared of both of the real and imaginary 
terms.  The half power approach for estimating 
damping is based on finding the bandwidth for each 

mode. The bandwidth is the normalized  across 
the resonant response at the amplitude of 
0.707Rmax.    The bandwidth is equal to the structural 

damping term r.  Using this value the damping is 
proportional to the strain in the system and is 
sometimes referred to as complex stiffness damping 
or hysteretic damping.   Typically, the damping 

factor  is used in a finite element simulation.  The 

damping factor , which is often referred to as 
viscous damping, is proportional to the velocity and 

is half the value of r.   
 

In this example, calculating the damping using the 
half power method provides excellent results for the 
first mode. This is shown in Figure 8.   
 

 
 

Figure 8 – Half Power Method – Mode 1 
 
The natural frequency for the first mode is 1.456 Hz 
 

𝛾 =
∆𝜔

2𝜔𝑟

=
0.029

2𝑥1.456
= 0.01 

 
Equation 2.0 

 
Using the same approach for the second mode, 
however, yields different results.  The damping used 
for each mode is the same. 
 

 
 

Figure 9 – Half Power Method – Mode 2 
 

𝛾 =
∆𝜔

2𝜔𝑟

=
0.080

2𝑥3.183
= 0.013 

 
Equation 3.0 
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For mode 2 the half power is approximately 30% 
higher than the actual value.  If the contributions 
from the lower and higher modes are eliminated and 
only the stiffness and mass line of mode 2 is used 
the resulting damping factor is once again in 
excellent agreement with the actual amount of 
damping present in the mode. 
 

 
 

Figure 10 – Half Power Method – Mode 2 Only 
 

𝛾 =
∆𝜔

2𝜔𝑟

=
0.065

2𝑥3.183
= 0.010 

 
Equation 4.0 

 
When the influences of the lower and higher modes 
are eliminated the half power method yields 
excellent results.   This is one of the benefits of curve 
fitting data and extracting the modal parameters for 
each mode. 
 

Considerations: 
 
When extracting modal parameters from empirical 
data by curve fitting is not an option, the following 
considerations should be made when using the half 
power method to extract damping information. 
 

 Ensure that the resolution of the data is such 
that the peak response at resonance has been 
captured.  In shake table tests the resonant 
frequency will typically be determined by phase 
angle and data collected at that frequency.  In 
lightly damped systems, a relatively small 
frequency offset from resonance can have a 
large effect on the peak response. 

 

 Be aware of how close neighboring modes are 
to the one that is being evaluated.  The closer 
the modes are the more likely they will 
influence the extracted damping value. 
 

 If modes appear to be relatively close, executing 
an eigenvalue analysis with the mode shapes 
normalized to the mass matrix will provide the 
information for evaluating how coupled the 
modes may actually be.  If the modes are 
coupled, the damping values are likely to be 
overestimated.  
 

 Typically, shake table data is obtained from 
components that are close in design to the one 
being evaluated.  It is always good practice to 
cross check the damping used in the analytical 
model by simulating the shake table test with 
the extracted damping values and comparing 
them to test.   
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