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Abstract: 

This tech brief outlines an approach for estimating 
stress concentrations without employing high mesh 
density finite element models. The method 
estimates stress concentrations by evaluating the 
behavior of the stress intensity or K field in the 
vicinity of a geometric discontinuity. In components 
with complex geometry, ensuring that the elastic 
stress concentration of a geometric discontinuity has 
actually been captured typically requires several 
runs with mesh density refinements.  The Minimal 
Mesh Density (MMD) method outlined in this brief is 
relatively insensitive to mesh density and local 
geometry features and therefore can be used as a 
means of quickly cross checking the reasonableness 
of a single pass stress concentration evaluation.  
Inherent in the approach is a means of quantitatively 
evaluating the load transfer characteristics present 
in the vicinity of the discontinuity. This information 
can facilitate the identification of design 
modifications which will tend to mitigate the 
concentration of stress in the load path.  Due to the 
minimal mesh density and local geometry definition 
required, this approach can increase the efficiency of 
load path design studies in areas of complex 
geometry. 

 
Background: 
 
This Minimal Mesh Density (MMD) approach uses a 
crack front in the vicinity of the discontinuity as a 
probe to assess the flow behavior of the stress field 
around the stress concentration.  The stress 
concentration, at the surface of the discontinuity, is 
determined from the variation in the stress intensity 
of an edge crack as it propagates from the notch.  
 
Effective Crack Length 
 
Central to the MMD approach is the concept of the 
effective crack length created by a geometric 
discontinuity.  Dowling illustrates this well with a 
crack emanating from a hole in an infinite plate.
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Three stress intensity solutions are provided for the 
problem.  The first solution computes the stress 
intensity based on the crack length originating at the 
center of the hole.  The second solution is the actual 
stress intensity that exists as a crack propagates 
from the edge of the hole.  The third solution is the 
stress intensity computed for an edge crack with the 
stress concentration of the hole used to multiple the 
far-field stress in the stress intensity calculation.   
 
All three solutions come to virtually the same value 
in the region where the crack length is equal to 10 to 
20 percent of the notch radius (i.e., the radius of the 
hole).   As the crack length exceeds 20 percent of the 
notch radius the third solution, which employs the 
stress concentration of the notch, begins to 
significantly deviate from the actual solution.  The 
first solution, however, remains in relatively good 
agreement with it.  The reason for this is as the crack 
front propagates it is no longer in the influence of 
the stress concentration of the notch. Using the 
effective crack length as the sum of the notch radius 

() and the crack length (a) provides an answer 
which is in very good agreement with the actual 
solution.  
 
 

 
 
 

Figure 1 – Half Model of Hole in Infinite Plate 

 
For Solution 1 the form factor F, which is a function 
of geometry and loading, is equal to 1.0.  This value 
is associated with an edge crack in plane stress 
under uni-axial loading.  
 
Solution 2 provides the actual stress intensity 
solution for the problem.  The form factor Fd is 
computed based on the crack length relative to the 
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effective crack length (i.e., the notch radius plus the 
length of the crack). 
 
Equation 1: 
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The form factor for the third solution is 1.12.  This is 
the value for an edge crack in plane strain under uni-
axial loading when the crack length is less than 13 
percent of the net section. 
 

 
 

 
Figure 2 – Normalized Stress Intensity Values 

 
Correlating Stress Intensity and kt 
 
The concentrated stress in an elliptical flaw is given 

in equations 2 and 3, where “a” is half the length of 

the major axis and “" is the radius of curvature at 

the end of the ellipse and  is the gross stress field.  
 
Equation 2: 
 



a
kt 21  

 
The stress intensity for a plane stress condition can 
be related to the stress concentration by multiplying 
the numerator and denominator of the second term 

of equation 2 by the gross stress field  and the 

square root of .
2
  The resulting relationship is given 

in equation 3.  
 
Equation 3: 
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Notice in Figure 2, that with Solution 1 the stress 
intensity values can be well represented by a linear 
function.  Solutions 2 and 3, however, require a 
power function to correctly capture the behavior 
within the process zone (i.e., within 10 to 20 percent 
of the notch radius).  Outside the process zone, 
Solutions 2 and 3 could also be reasonably curve fit 
with a linear model.  
 
The value for Solution 1 is equal to 1.0 at the surface 
of the circular hole.  In this solution the effective 
length of the crack originates at the center of the 
hole.   Substituting this value into the quotient of 
equation 3 the resulting kt = 3.0.  This yields the 
correct stress concentration value for a hole in an 
infinite plate. 
 

Estimating kt with Stress Intensity Values: 
 
The utility gained from approaching the stress 
intensity calculation using an effective crack length 
as in Solution 1 is that an effective stress intensity 
value can be obtained at the surface of the notch 
without a crack being present.   Using the effective 
stress intensity value an estimate of the notch kt can 
then be obtained from equation 3.0.  
 
Crack Front Singular Elements: 
 
In addition to providing a cross check of a converged 
stress field solution, the advantages of estimating a 
kt from stress intensity data are that the mesh 
density required to obtain the desired information is 
at a minimum and the actual notch geometry does 
not need to be present in the model.  During a 
design activity this MMD approach can be more 
efficient than creating studies with detailed notch 
geometry changes and models with high mesh 
densities. 
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In using a coarse mesh to obtain stress intensity 
values the displacement extrapolation method 
should be employed.  This method uses the 
displacement field at the tip of singular elements 
around the crack front for the stress intensity 
calculation.  Relatively coarse meshes can be used to 
obtain accurate results since the solution’s primary 
field variable is displacement.  Figure 3 provides an 
example of a typical mesh using the singular 
elements at the crack front. 
 

 
 

Figure 3- Crack Front Mesh 
 

In ANSYS the stress intensity values are computed in 
POST 1 using the KCALC command when the 
displacement extrapolation method is employed.  
Executing this command requires establishing a local 
coordinate system at the crack front and defining a 
path around the crack tip for mapping of the 
displacement field.
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The MMD approach uses edge cracks at the point of 
the geometric discontinuity where the stress field is 
interrupted.  Edge cracks lend themselves to being 
swept along complex paths starting with 2D planar 
elements making the approach easy to implement 
for detail design studies.  
 
Estimating Process: 
 
In complex geometry it is not always apparent from 
inspection what is the effective crack length 
associated with the geometric discontinuity.  In the 
case of a hole in an infinite plate the characteristic 
dimension for the initial effective crack length (i.e., 
radius of hole) is apparent.   The behavior of Solution 
1, however, lends itself to estimating the effective 

                                                           
3 Reference section 13.3.3.2 of ANSYS Structural Analysis Guide – 
Version 13 

stress intensity at the surface of the notch even 
when the initial effective crack length is unknown.  
For Solution 1 the stress intensity behavior as a 
function of crack growth is relatively linear.  This can 
be used to make an estimate of the effective stress 
intensity at the notch surface without actually 
knowing the effective initial crack length. 
 
The process is to first probe the stress field with two 
or more cracks at different lengths that are beyond 
the process zone and then extrapolate the stress 
intensity data back to the notch surface with a linear 
regression model.  As with the example of a hole in 
an infinite plate, the value can be substituted into 
equation 3 and the correct stress concentration 
obtained. 
 
This process also works for a plate edge crack.   In 
this particular case there is no stress concentration 
at the edge of a plate since no geometric 
discontinuity exists to disrupt the stress field.  When 
probing the stress field with two or more cracks and 
using a linear regression model to extrapolate back 
to the surface the result will be a non-zero value at 
the surface.  When this non-zero value, however, is 
substituted into equation 3 the correct answer of   a 
kt = 1.0 is still obtained since the radius of curvature 

(i.e., ) is infinite for a straight edge.   
 
Each of the three solutions in Figure 2 requires a 
power function to obtain exact stress intensity 
results.  A linear model, however, is very adequate 
for Solution 1 which employs the concept of an 
initial effective crack length associated with the 
feature creating the stress disruption.  
 

Examples of the Process: 
 
The first two examples are stepped bars.  The first 
example has a step ratio (D/d) of 1.5 and the second 
one of 1.25.  In these cases the shoulder of the step 
can be thought of as the effective length of half the 
crack face.  The other side of the crack face has been 
eliminated by the step being created.  This obviously 
influences the stress field in the notch radius of the 
step.  The approach outline, however, does not 
require a priori knowledge of what might be an 
acceptable effective initial crack length. 
 
In these examples three different crack lengths are 
employed so that linearity of the probe data can be 
quantified by the regression analysis of the linear 

Quarter mid side nodes at crack 

front 
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curve fit.  In practice only two probes would be 
necessary.  Additionally, the length of the cracks 
used to probe the stress field have been chosen such 
that they would be outside the process zone of any 
notch evaluated in these particular cases.  The crack 
lengths are 0.05, 0.075 and 0.10 inches.   
 
Step Bar Example with D/d = 1.5 
 

 
 

Figure 4 – Step Bar Definition 
 

The mesh density at geometric discontinuity is 
shown in Figure 5. 
 

 
 

Figure 5- Mesh Density  
 
The gross stress field in this example is 1 ksi and 
Table 1 provides the results of the crack probe into 
the stress field at the step.   
 

Table 1 – Stress Intensity Values (Plane Stress) 
 

 

The values for the in-plane shear stress intensity 
factor KII are high enough to indicate that the crack 
probe is not completely perpendicular to the first 
principle stress.  The effective stress intensity values 
being in good agreement with the KI values indicates 
that the probe is adequately aligned with the first 
principal stress field for use in the stress 
concentration estimates. 
 

 
 

Figure 5 – Linear Regression Model 
 

Figure 6 provides the comparison between the stress 
concentrations obtained from equation 3 and results 
from finite element models with converged 
solutions. The intercept value of 0.571 ksi-in

0.50  

obtained from the linear region is used in equation 
3. 
 

 
 

Figure 6 
 

The MMD approach does not require any detailed 
notch geometry and yet is in good agreement with 

Crack Length KI KII K eff

Inches ksi-in0.50 ksi-in0.50 ksi-in0.50

0.050 0.66 0.12 0.67

0.075 0.72 0.11 0.73

0.100 0.77 0.10 0.77

1.0 

1.5 

Mirror Symmetry 

Crack Length 

No notch geometry 

required 
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high density meshed finite element models that 
explicitly model the notch radius. 
  

 
 
Figure 7 – Mesh Density for Converged Solution 
 
 
Similar results are obtained with the step bar having 
a characteristic step ratio of 1.25.   Figure 8 provides 
a plot the comparison. 
 
 

 
 

Figure 8 
 
 
T-Bar Example: 
 
One additional example employing a T-Bar illustrates 
the need to have the crack probe reasonably aligned 
with the first principle stress field as well as using 
plane-strain stress intensity value to provide an 
upper bound for the MMD approach. 
 
 
 
 
 
 

 

 
 

 
Figure 9:  T-Bar 

 
The initial crack probe orientation is shown below. 

 

 
 

Figure 10:  Initial Crack Orientation 
 
Table 2 provides the stress intensity values from the 
crack probe in the orientation shown in Figure 9.  As 
seen from the data in the table it is clear that the 
alignment is not perpendicular to the first principal 
stress field.  The in-plane shear is approximately 40 
percent of the KI value.  This is due to the load 
having to flow around the step corner to be 
equilibrated at the head of the T-Bar. 
 

Table 2 – Stress Intensity Values (Plane Stress) 
 

 
 
Figure 11 provides the crack probe orientation that 
aligns with the first principle stress field at the 
discontinuity.   

Crack Length KI KII K eff

Inches ksi-in0.50 ksi-in0.50 ksi-in0.50

0.050 1.82 0.70 1.95

0.075 1.87 0.73 2.01

0.100 1.91 0.75 2.05

Mirror Symmetry 

No notch geometry 

required 

Crack Length 
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Figure 11:  Properly Aligned Crack Orientation 
 
Table 3 provides stress intensity values from the 
properly aligned crack probe.  The in-plane shear 
contribution is negligible.  
 

Table 3 – Stress Intensity Values (Plane Strain) 
 

 
 

In addition to obtaining the stress intensity values 
aligned with the first principle stress field, the values 
were also obtained under plane strain conditions.  
Plane strain conditions provide the maximum stress 
concentration estimates.  Figure 12 is a plot of the T-
Bar results. 
 

 
 

Figure 12 
 

The plane strain stress concentration predictions 
from equation 3 are within 3 percent of the 
converged FEA models. 
 

Conclusions: 
 
The MMD approach can provide an efficient means 
of executing design studies in optimizing geometric 
features found in complex load paths.  Sweeping 2D 
edge crack models through transition regions of 
complex geometry makes this approach useful for 
design optimization. The method requires minimal 
local geometry features to develop a quantitative 
understanding of the stress field behavior in the 
vicinity of geometric discontinuities and minimizes 
the mesh density required in the studies.    
 
The MMD approach will not always provide 
conservative results as demonstrated in the T-Bar 
example.  The trend lines, however, will follow a 
converged solution.  Using plane strain stress 
intensity values will always provide the highest 
stress concentration estimates for this method. 
 
 
 
 
 
 
 

Crack Length KI KII K eff

Inches ksi-in0.50 ksi-in0.50 ksi-in0.50

0.050 2.54 0.03 2.54

0.075 2.63 0.10 2.63

0.100 2.73 0.10 2.73

Crack Length 


