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Abstract: 

This Tech Brief discusses the basis and process of 
computing the relative kinetic and potential energy in free 
torsional vibration patterns.  The utility of these 
computations is that they facilitate identifying where, in a 
system, stiffness and inertia changes will provide the 
greatest leverage for influencing the system’s torsional 
natural frequencies and inertia participation. 
 
Background: 
 
Typically, torsional natural frequency evaluations are 
performed for drive train systems having shafts operating 
at different speeds.   The drive elements are oftentimes 
modeled with a lumped inertia/torsional spring 
representation and  Figure 1 provides a schematic of a 
simple generic drive and torsional model.  

 
 

 
 
 

 
 

Figure 1 
 
Any shaft in the system can be chosen as the reference to 
which the inertia and stiffness is reflected, but 
characteristically it is the driven shaft. The values are 
reflected to the reference shaft so as not to violate the 
conservation of energy in the system model.  If the 
gearbox is a reducer and the reference is the drive shaft 
then the high speed components will be reflected by the 
square of the gearbox reduction.   
 
In the simple example the gearbox is a reducer with a 10:1 
ratio.  The inertia and stiffness values for the system are 
provided in Table 1. 

 
Table 1 – Simple Torsional Model 

 

 

 
Eigenvectors or Mode Shapes: 
 
The eigenvalue solution to a spring-mass system provides 
the frequencies at which a free exchange between kinetic 
and potential energy occurs in the system.  Typically these 
frequencies should be avoided during operation since they 
result in amplified vibration responses and would result in 
an unbounded response without damping being present.  
Additionally, the eigenvalue solution provides the relative 
vibration patterns, or eigenvectors, for these states of free 
energy exchanges.   
 
Frequently, the relative vibration patterns or eigenvectors 
are normalized to the mass matrix.  If this is the case the 
following relationship holds: 

 

     0.1 M
T

 

 
Where  is the eigenvector 

 

Equation 1.0 
 
To determine whether or not the extracted vectors have 
been normalized to the mass matrix, simply look at the 
value of the vector for the rigid body (e.g., 0.0 Hz) state. 
The vector will be of uniform value, and if that value is 
equal to the inverse of the square root of the sum of the 
system’s inertia then the mode shapes (e.g., eigenvectors) 
have been normalized to the mass matrix.  
 
The natural frequencies and mode shapes for the system 
defined in Table 1 are provided below: 

 
Table 2 – Eigenvalues and Vectors 

 

 
 
The total sum of the system’s inertia is 12,500 in-lbs. sec

2
.  

The inverse of the square root of this value is 0.00894.  
This is the same value of the mode shape for the rigid 
body mode providing verification that the mode shapes 
are normalized to the mass matrix. 
 

Relative Potential Energy per Mode: 
 
Evaluating the relative potential energy in each mode 
enables the engineer to quickly determine which element 
in the system will have the greatest impact on the 
frequency of a given mode if its stiffness is changed.   

in-lbs-sec2 In-Lbs/Rad in-lbs-sec2 In-Lbs/Rad

J1 55 K1 5.00E+06 J1 5500 K1 5.00E+08

J2 15 K2 2.50E+07 J2 1500 K2 2.50E+09

J3 2000 K3 5.00E+09 J3 2000 K3 5.00E+09

J4 3500 J4 3500

Values Reflected to Driven Shaft

Inertia and Stiffness Values - Gearbox Reduction 10:1

Values at Operating Shafts

Mode 1 2 3 4

Frequency (Hz) 0.00 59.48 215.09 366.52

Station

1 8.94E-03 1.00E-02 -1.13E-03 1.65E-04

2 8.94E-03 -5.38E-03 2.16E-02 -9.45E-03

3 8.94E-03 -8.01E-03 2.48E-03 1.87E-02

4 8.94E-03 -8.87E-03 -8.91E-03 -6.89E-03

Mode Shape
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Since the mode shapes are normalized to the mass matrix 
there is no need to obtain an absolute displacement field.  
This would have been done by scaling the vectors with a 
mode coefficient based on uniform torsional excitation.  
The vector can be treated as the actual torsional angular 
displacement of the drive, for a given mode, since the 
evaluation is relative not absolute.  The units for the 
vector are used as if they are radians (e.g., as if the vector 
had been scaled by a mode coefficient). 
 
The relative potential energy per span per mode is 
computed by: 
 

 250.0 kjjn KPE    

 
Equation 2.0  

 
Where the subscript n is the specific span (1-3),  j is the 
station and k is j+1.   
 
For the simple system under consideration the relative 
potential energy is provided in Table 3: 
 

Table 3 – Relative Potential Energy 
 

 
 
 
Relative Kinetic Energy per Mode: 
 
Computing the relative kinetic energy enables efficient 
decisions regarding the impact changes in inertia will have 
on a given mode.  The relative kinetic energy per lumped 
inertia is given in Table 4. 
 
An important cross check is to ensure that the kinetic 
energy is equal to the potential energy for each mode.   
This will be the case since the mode is at a frequency 
where there is a free exchange between the two forms of 
energy. 
 
 
 

 
 
 

Table 4 – Relative Kinetic Energy 
 

 
 
The relative kinetic energy is calculated by equation 3.0. 
Where j is the station for a given mode 
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50.0 jjj JKE   

 
Equation 3.0  

 
Assuming simple harmonic behavior, the motion of 
the lumped inertia is given in equation 4.0.  The 
mode shape, as in equation 2.0, is treated as relative 
displacements (radians) in the vibration pattern 
associated with the natural frequency  
 

    )cos( t   

 
Equation 4.0 

 

    )sin( t   

 
Equation 5.0 

 
Substituting equation 5.0 into equation 3.0: 
 

 250.0  jjj JKE   

 
Given the distribution of the kinetic energy and stiffness of 
this simple system, the first elastic mode is primarily 
controlled by the inertia of the driver.  The second and 
third elastic modes are governed by the inertia of the 
gearbox.   
 

 
 
 

Span

1 2 3 4

1 0.00E+00 5.93E+04 1.30E+05 2.31E+04

2 0.00E+00 8.64E+03 4.59E+05 9.91E+05

3 0.00E+00 1.88E+03 3.25E+05 1.64E+06

Total 0.00E+00 6.98E+04 9.13E+05 2.65E+06

Span

1 2 3 4

1 NA 84.9% 14.2% 0.9%

2 NA 12.4% 50.3% 37.4%

3 NA 2.7% 35.5% 61.8%

Total 100.0% 100.0% 100.0%

Relative Potential Energy Per Mode

Percent Potential Energy Per Mode

Station

1 2 3 4

1 0.00E+00 3.86E+04 6.46E+03 3.96E+02

2 0.00E+00 3.03E+03 6.42E+05 3.55E+05

3 0.00E+00 8.95E+03 1.12E+04 1.85E+06

4 0.00E+00 1.92E+04 2.54E+05 4.41E+05

Total 0.00E+00 6.98E+04 9.13E+05 2.65E+06

Span

1 2 3 4

1 NA 55.3% 0.7% 0.0%

2 NA 4.3% 70.3% 13.4%

3 NA 12.8% 1.2% 69.9%

4 NA 27.6% 27.8% 16.6%

Total 100.0% 100.0% 100.0%

Relative Kinetic Energy Per Mode

Percent Kinetic Energy Per Mode
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Summary: 
 
Treating the eigenvectors as relative angular 
displacements in a torsional vibration pattern enables an 
engineer to quickly determine the potential and kinetic 
energy distribution in a given mode.   This provides the key 
parameters for determining the best approach for moving 
the frequencies of modes or decoupling them. 
 
The key to this approach is to ensure the mode shapes are 
normalized to the mass matrix.  Checking to see that the 
total inertia of the system has been accounted for in the 
rigid body mode is a means by which an analyst can 
confirm whether or not the eigenvectors have been 
normalized to the mass matrix.  
 
Additionally, the other cross check that should be done is 
to ensure that the potential and kinetic energies are equal 
for each mode.  This ensures that the computations for the 
relative energies have been correctly performed.  


